Synthesis of lanthanum–strontium manganites by oxalate-precursor co-precipitation methods in solution and in reverse micellar microemulsion

Vuk Uskokovića,*, Miha Drofenikb,a

aJožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
bFaculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia

Received 2 March 2005; received in revised form 28 June 2005
Available online 22 December 2005

Abstract
Nanostructured lanthanum–strontium manganites were synthesized using two different co-precipitation approaches, one in bulk solution, and the other in reverse micelles of CTAB/1-hexanol/water microemulsion. In both cases, precursor cations were precipitated by using oxalic acid. The properties of the materials synthesized by using these two methods were compared in order to reveal potential advantages of the microemulsion-assisted approach. The influence of the annealing conditions on the properties of synthesized manganites was investigated by using X-ray diffraction, transmission electron microscopy, differential thermal analysis, thermogravimetric analysis and magnetic measurements.

Keywords: Co-precipitation; Manganite; Microemulsion; Nanosize; Reverse micelle

1. Introduction
Preparation of materials within reverse micelles [1–3] belongs to the family of wet synthesis procedures, known of a number of advantages comparing to the traditional high-temperature solid-state processing methods, such as excellent control of the final powders’ stoichiometries with possibilities of obtaining homogeneity and mixing on atomic scale, narrow particle sizes distribution, negligible contamination of the product during the homogenization of the starting compounds, low energy consumption, low aging times and simple equipment. Parameters of reverse micellar synthesis of nano-particles, usually manipulated and controlled in the courses of variety of design procedures, include: water-to-surfactant [4,5] and surfactant-to-co-surfactant [6] molar ratios, ionic strength [7,8], temperature [9], aging time [10,11], etc. However, due to the signs of frequent uniqueness and significant narrowness of limiting conditions in the processes of reverse micellar preparation of materials, deep questions have recently been raised upon the problem of justifying the generalizations of relationships between particular parent microemulsion systems and the obtained particles [12].

It is known that catalytic activity of LaSr-manganites largely depends on the method of its synthesis [13]. Although the methods for the preparation of LaMnO₃ in reverse micelles were already reported in the literature [14–16], the only synthesis of LaSrMnO₃ or of any mixed lanthanum manganite within reverse micelles, published elsewhere is our previous work [17] concerning co-precipitation preparation of La₀.₆₇Sr₀.₃₃MnO₃₊₁ in CTAB/1-butanol/1-hexanol/water microemulsion by using tetramethylammonium hydroxide as an alkali precipitating agent. Synthesis of different perovskite mixed metal oxides by using oxalate precursors (including La₁₋ₓSrₓMnO₃) [18] has been noticed elsewhere, and is largely excepted as a method which produces uniform cation distribution [19,20].
2. Experimental

Two different wet, oxalate-precursor co-precipitation approaches to the synthesis of LaSr-manganites—one in bulk solution and the other in the reverse micelles of CTAB/1-hexanol/water microemulsion, were performed and investigated within the work presented here. In both cases, the composition La$_{0.67}$Sr$_{0.33}$MnO$_3$+δ was desired as the final product. The following chemicals were used in the course of the syntheses procedures.

The co-precipitation synthesis in bulk solution proceeded as follows. The 6 ml of aqueous solution comprised the molar ratio of precursor cations Mn:La:Sr = 4:6:2:2:1. MnCl$_2$ (>99%, Merck-Alkaloid), La(NO$_3$)$_3$ (99.9%, Alfa Aesar) and Sr(NO$_3$)$_2$ (>99%, Kemika) were used as precursor salts. MnCl$_2$ was preferred over Mn(NO$_3$)$_2$ due to easy oxidation of Mn$^{2+}$ by dissolved oxygen in the aqueous nitrate solution. However, Mn$^{2+}$ ions ought to be added in an amount that surpasses the stoichiometric amount due to the formation of Mn$^{2+}$—complex compounds [20] with nitrate ions, that are stable in the presence of an acidic precipitating agent. Different amounts of pure ethanol (99.8%, Carlo Erba) were then added into the prepared solution. Saturated aqueous solution of oxalic acid (>99.5%, Alkaldoid) was then added into the hydro-alcoholic solution so that the volume of the acid was 1.1 times the volume of the precursor solution. The colloid solutions were aged for 3 h at room temperature. Subsequently, the samples were repeatedly sedimented by performing centrifugation, and washed with ethanol–water (1:1) mixture, whereby the yielded powder was then dried at 80 °C. The dried powders were then calcined in air at different temperatures and for different times.

The co-precipitation method of synthesis by using reverse micellar microemulsion was proceeding as follows. Two microemulsions with the identical CTAB (>99%, Alfa Aesar): 1-hexanol (>98%, Merck-Schuchardt): H$_2$O = 29.7:55.1:15.2 weight ratios, were prepared, whereby in place of the aqueous phase, the first one carried aqueous solution of MnCl$_2$, La(NO$_3$)$_3$ and Sr(NO$_3$)$_2$ with resulting cation concentration of 0.5 M and molar ratio of Mn$^{2+}$:La$^{3+}$:Sr$^{2+}$ = 5:2:1, whereas the second one comprised 0.84-M aqueous solution of oxalic acid, which served as the precipitation agent. The weight ratio between the precursor and the precipitating microemulsion was set to 1.5. The two microemulsions were mixed and aged for 3 h at room temperature. The resulting oxalate precipitate, finely and uniformly dispersed within the resulting microemulsion, was then separated by centrifugation and repeatedly washed with 0.06-M solution of oxalic acid in ethanol. The powder was then dried at 70 °C in air, and subsequently calcined under various annealing conditions.

The as-dried and subsequently calcined powders were analyzed by using TEM (JEOL JEM-2000FX), DSC and TGA measurements (Mettler-Toledo STAR System), room-temperature magnetic measurements (Manics DSM10 magnetometer), temperature-dependent magnetic measurements and X-ray diffraction analysis (XRD) (D4 Endeavor diffractometer). Room-temperature measurements of the saturation magnetization were performed in the external field range from 0.84 to 1.06 T. Average particle sizes were estimated by using Debye-Scherrer’s equation. DSC and TGA measurements were performed in air up to 1200 °C, with heating rates of 10 °C/min.

3. Results and discussion

In Figs. 1 and 2, XRD diagrams of the sample synthesized in bulk conditions, calcined at different temperatures for 2 h (Fig. 1) and at 700 °C for 2–24 h (Fig. 2), are shown. The formation of perovskite phase begins at between 500 and 700 °C (Fig. 1). During the heating at 700 °C, the crystallization and grain growth processes were completed after between 2 and 3 h of the annealing time (Fig. 2). The average particle size of the samples calcined for 3 or more hours is 11 nm, according to Debye-Scherrer’s equation. The samples calcined at 900 and 1100 °C were according to this account having average particle sizes of 13 and 27 nm, respectively.

The dependence of the weight ratio of the obtained perovskite manganite phase within the synthesized samples vs. volume ratio of ethanol-to-water, is presented in Fig. 3.
The optimal volume ratio of ethanol to water for the used initial concentrations and proportions of precursor salts, was found to be 2, in which case, the perovskite phase was the only detected phase comprising the calcined samples. It is worth noting that for the samples represented by two end points in Fig. 3, Mn$_3$O$_4$ is gained as the only secondary phase, whereas in all the other cases La$_2$O$_3$ was detected as the only present crystalline secondary phase.

The samples calcined at 1100 $^\circ$C were suspened in water (10 mg in 20 ml of water); pH value was 5.7 for the sample synthesized in microemulsion and 6.5 for the sample synthesized in bulk conditions, which was, due to the fact that amorphous SrO readily slakes with water yielding a crystalline hydrated hydroxide behaving as a strong base, a clear indication that Sr ions were not present in form of oxides separate from manganite phase.

From XRD diagram of the sample synthesized in microemulsion and calcined at different temperatures, presented in Fig. 4, it might be seen that precursor oxalates (and/or carbonates) comprising the as-dried powder transform to La$_2$O$_2$CO$_3$ and Mn$_2$O$_3$ after heating at 600 $^\circ$C for 2 h, and possibly to less crystalline SrO, which was not identified by using XRD. Annealing of the as-dried powder in air at 700 $^\circ$C for 10 h did not significantly change XRD pattern (not shown herein), still comprising Mn$_2$O$_3$ and La$_2$O$_2$CO$_3$ diffraction peaks, which suggests that relatively high temperatures are necessary condition for the formation of manganite phase within microemulsion-assisted procedure of the synthesis as presented herein. After heating at 800 $^\circ$C for 2 h, La$_2$O$_2$CO$_3$ and SrO transform to La$_2$SrO$_x$, which subsequently, at higher calcination temperatures, reacts with Mn$_2$O$_3$ giving LaSr-manganite with a slight amount of secondary Mn$_3$O$_4$ secondary phase. The samples calcined at 1000 and 1100 $^\circ$C have average particle size of 23 nm, according to Debye–Scherrer’s equation.

DTA and TGA diagrams of the heating of the as-dried powders, one synthesized in bulk conditions and the other in reverse micellar microemulsion, are shown in Fig. 5. Stoichiometric calculations have shown that 34% weight loss is expected during the process of decomposition of oxalate precursors (with account to the stoichiometric, non-complete precipitation of Mn$^{2+}$ ions) into La$_{0.67}$Sr$_{0.33}$MnO$_3$, which is in accordance with experimental results. From the TGA results, water loss might be approximated to \sim15% and the rest \sim35% belongs to the decomposition of oxalates. The endothermic peak at \sim150 $^\circ$C derives from thermal dehydration of the oxalate precursors. Two more major exothermic peaks might be noticed at bulk-synthesized sample, with maximums at the temperatures of 312.3 $^\circ$C (typical for the wet approaches to the La-manganite synthesis [21]) and 421.6 $^\circ$C, whereby the sample synthesized within microemulsion exhibits the same two peaks slightly moved to higher temperatures: one at 316.8 $^\circ$C, and the second at 426.3 $^\circ$C, whereby the third exothermic peak is present with maximum at 491.1 $^\circ$C. The exothermic peak at \sim315 $^\circ$C is attributed to the thermal decomposition of C–H and C–C bonds of oxalate precursors [22] and to the subsequent formation of oxycarbonate intermediate. Lanthanum oxalate is known to lose all of its bound water up to the temperature of 225 $^\circ$C, at 400 $^\circ$C exothermally transforms to carbonate, then endothermally to oxycarbonate, and at 710 $^\circ$C to oxide [23]. Strontium oxalate is known to endothermally release all bounded water up to 250 $^\circ$C, to exothermally transforms to strontium carbonate at between 420 and 590 $^\circ$C, whereby carbonate transforms endothermally to oxide [24] at between 770 and 1020 $^\circ$C. Small endothermic peaks observed at T >700 $^\circ$C might thus belong to the gradual incorporation of Sr ions into already formed manganite perovskite lattice. The minor weight loss step (starting at \sim700 $^\circ$C) in case of the microemulsion-assisted synthesized sample might as well occur due to the emission...
of carbon dioxide, since La$_2$O$_2$CO$_3$ (that later transforms to perovskite oxide) was detected in the sample after heating at 800 °C (Fig. 4).

XRD diagrams of the bulk-synthesized powder heated up to temperatures corresponding to the end-points of two of the largest common exothermic phase transitions observed within the DSC measurements, are shown in Fig. 6. All diffraction peaks of the sample quenched to 350 °C correspond to cubic z-MnC$_2$O$_4$, whereby all the peaks of the sample quenched at 470 °C correspond to cubic Mn$_3$O$_4$. However, the formation of perovskite phase might be noticed at the same XRD pattern. Therefore, the first exothermic peak on DSC diagram corresponds to the transformation of La and Sr precursors to amorphous oxycarbonates, whereby the second peak corresponds to the transition of Mn-oxalate to Mn$_3$O$_4$, followed by the gradual formation of perovskite manganite. Although thermal decomposition of hydrous manganese oxalate in

Fig. 5. DTA and TGA diagrams of the heating of the as-dried powders, synthesized under (a) bulk conditions and (b) in microemulsion.

Fig. 6. XRD diagrams of the bulk-synthesized sample quenched up to (a) 350 °C and (b) 470 °C with the heating rate of 10 °C/min. o stands for cubic z-MnC$_2$O$_4$, whereas m denotes cubic Mn$_3$O$_4$.

Fig. 7. XRD diagrams of the samples synthesized in microemulsion and quenched up to (a) 370 °C, (b) 460 °C and (c) 500 °C with the heating rate of 10 °C/min.

Fig. 8. EDS diagrams of the samples synthesized in (a) bulk conditions and (b) within reverse micelles, calcined at 1100 °C.

Fig. 9. TEM images of the as-dried powders synthesized (a) in bulk conditions and (b) in microemulsion.
air leads normally to an exothermic (in the temperature range 230–330 °C) [25] formation of MnO₂, it is known that different oxalate hydrate stoichiometries and different environments can result in the formation of different manganese oxide products [26].

In case of the microemulsion synthesis, after the first exothermic DSC peak at 317 °C no major changes in the XRD pattern were detected, whereas a gradual formation of manganese oxide phase through a transient amorphous phase is obvious to occur during the continual heating to both 420 °C and up to 500 °C (Fig. 7). Therefore, the first, endothermic DSC peak corresponds to the water loss, second, endothermic one to the phase transition in amorphous state, whereby the third peak corresponds to the transition of the crystalline phase comprising as-dried powder into manganese oxide phase, which subsequently reacts with LaSrOₓ, yielding as a result, after sufficient thermal treatment, the manganite phase (Fig. 4).

From the presented EDS spectra (Fig. 8) of the samples synthesized both in bulk conditions and within reverse micelles, and calcined at 1100 °C, it is obvious that all three of the desired cations were constituent within the obtained products. Origin of the Cu peaks belongs to the copper grid used as the powder carrier within the TEM measurements.

Fig. 10. TEM images of the samples synthesized in bulk conditions and calcined at (a) 700 °C and (b) 1100 °C for 2 h.

Fig. 11. (a–c). TEM images of the sample synthesized in bulk conditions and calcined at (a, b) 700 °C for 3 h and of the sample synthesized in microemulsion and calcined at (c) 1100 °C for 2 h.

Fig. 12. (a) Dependency of saturation magnetization on the calcination temperature for the samples synthesized in bulk conditions (-Δ-) and in microemulsion (-o-) and (b) the dependence of the saturation magnetization on the calcination time for the sample synthesized in bulk conditions and calcined in air at 700 °C.
TEM micrographs of some of the synthesized samples are presented in Figs. 9–11. Comparison of Figs. 9a and b leads to the conclusion that much restricted growth processes in the precipitation of oxalate precursors occurred in the case of reverse micellar synthesis, as compared to the bulk case. Almost completely amorphous structure of the sample synthesized in bulk conditions and calcined at 700 °C for 2 h, is presented in Fig. 10a, whereby crystalline nano-sized particles (in the range of 20–50 nm) of the sample synthesized in bulk conditions and calcined at 1100 °C for 2 h, are presented in Fig. 10b. Uniform nano-sized particles of the sample synthesized in bulk conditions and calcined at 1100 °C for 3 h are presented in Figs. 11a and b, whereby low polydispersity of the sample synthesized in microemulsion and calcined at 1100 °C for 2 h, might be noticed from Fig. 11c.

The increase in saturation magnetization with an increase in calcination temperature, for the samples prepared by using both synthesis routes, is evident from Fig. 12a. The magnetization of the bulk-synthesized sample calcined at 1100 °C for 2 h is twice smaller comparing to the microemulsion-assisted synthesized sample calcined at the same conditions. The magnetization of the sample synthesized in reverse micelles and calcined at 800 °C derives from the small amount of perovskite manganite phase, the sign of which is visible on the corresponding XRD diagram (Fig. 4c). At 800 °C, the perovskite phase had obviously already started forming in case of the reverse micelle synthesized sample. From Fig. 12b, a large increase in magnetization value between the samples synthesized in bulk conditions and calcined at 700 °C for 2 and 3 h, respectively, has been noticed, after which magnetization slowly increases when the calcination time is prolonged from 3 to 24 h. The magnetization increase in this case goes together with an increase in crystallinity as is obvious from Fig. 2.

The dependencies of saturation magnetization on the measurement temperature towards zero temperature for the sample synthesized in microemulsion and calcined at 1000 °C, under various external fields, are presented in Fig. 13. The blocking temperature (the existence of which implies partly superparamagnetic nature of the synthesized particles), the temperature where field-cooled and zero field-cooled curves divert, decrease with the increase in the intensity of the external magnetic field. A glimpse at the unidentified phase transition, occurring at 37 K, can be caught. Similar saturation magnetization vs. measuring temperature (towards Curie point) dependencies, of the sample synthesized in bulk conditions and calcined at 1100 °C and of the sample synthesized in microemulsion and calcined at 1000 °C, are presented in Fig. 14. Almost linear decrease in magnetization from room temperature to 90 °C is noticed in both cases. Curie point was in both cases ~100 °C.

4. Conclusions

Two co-precipitation procedures for the synthesis of LaSr-manganite were successfully employed. The one was based on the precipitation of precursor cations in aqueous-ethyl-alcoholic solution by using oxalic acid, and subsequent
annealing thereof, whereby the second method was based on the precipitation of precursor cations in reverse micellar domain of CTAB/1-hexanol/water microemulsion, together with subsequent calcination of the obtained precipitate. Whereby in the first, so-called bulk-case 700°C was sufficient temperature for obtaining the desired chemical composition, temperatures higher than 1000°C ought to be reached in case of the microemulsion-assisted procedure in order to obtain the desired LaSr-manganite product. Studying the chemical pathways leading to the formation of the desired product yielded suggestions that within the bulk procedure, Mn-oxalate transforms to Mn₃O₄ that gradually reacts with LaSr-oxycarbonates to give perovskite manganite, whereas in case of the microemulsion-assisted procedure MnO and La₂O₂CO₃ were detected as the intermediate products with La₂O₂CO₃ transforming into La₂SrOₓ which then reacts with Mn₂O₃ to give manganite structure. The certain restrictions in the size of co-precipitated particles were detected in case of the reverse micellar synthesis as compared to the powders derived from the bulk synthesis. Narrowly dispersed manganite particles in size were detected within the samples co-precipitated in bulk conditions and calcined at 700°C for 3 h and at 1100°C for 2 h, as well as within the sample co-precipitated in microemulsion and calcined at 1100°C. However, the dispersing effects of reverse micelles did not have large influence on the morphological uniformity of the produced powders in comparison with the results obtained by following the co-precipitation procedure in an ordinary aqueous solution. Saturation magnetization increases with the calcination temperature up to values of 45 and 23 emu/g for the microemulsion-assisted and bulk synthesized samples, calcined at 1100°C, respectively. Curie point was, comparing the cases of the bulk-synthesized sample calcined at 1100°C and microemulsion-assisted synthesized sample calcined at 1100°C, in both cases found at ~100°C. The blocking temperature detected at between 35 and 5 K when the external magnetic field varied from 1500 Oe towards 10,000 Oe, suggests partly superparamagnetic nature of the manganite sample, synthesized by performing microemulsion-assisted procedure and calcined at 1000°C.

References